Symmetrical Solutions for Non-Local Fractional Integro-Differential Equations via Caputo–Katugampola Derivatives
نویسندگان
چکیده
Fractional calculus, which deals with the concept of fractional derivatives and integrals, has become an important area research, due to its ability capture memory effects non-local behavior in modeling real-world phenomena. In this work, we study a new class Volterra–Fredholm integro-differential equations, involving Caputo–Katugampola derivative. By applying Krasnoselskii Banach fixed-point theorems, prove existence uniqueness solutions problem. The modified Adomian decomposition method is used, solve resulting differential equations. This technique rapidly provides convergent successive approximations exact solution given problem; therefore, investigate convergence approximate solutions, using method. Finally, provide example, demonstrate our results. Our findings contribute current understanding equations their have potential inform future research area.
منابع مشابه
The analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform
In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...
متن کاملthe analytical solutions for volterra integro-differential equations within local fractional operators by yang-laplace transform
in this paper, we apply the local fractional laplace transform method (or yang-laplace transform) on volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. the iteration procedure is based on local fractional derivative operators. this approach provides us with a convenient way to find a solution ...
متن کاملSome New Uniqueness Results of Solutions for Fractional Volterra-Fredholm Integro-Differential Equations
This paper establishes a study on some important latest innovations in the uniqueness of solution for Caputo fractional Volterra-Fredholm integro-differential equations. To apply this, the study uses Banach contraction principle and Bihari's inequality. A wider applicability of these techniques are based on their reliability and reduction in the size of the mathematical work.
متن کاملFractional type of flatlet oblique multiwavelet for solving fractional differential and integro-differential equations
The construction of fractional type of flatlet biorthogonal multiwavelet system is investigated in this paper. We apply this system as basis functions to solve the fractional differential and integro-differential equations. Biorthogonality and high vanishing moments of this system are two major properties which lead to the good approximation for the solutions of the given problems. Some test pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2023
ISSN: ['0865-4824', '2226-1877']
DOI: https://doi.org/10.3390/sym15030662